diskrete Punktmenge

diskrete Punktmenge
дискретное точечное множество

Немецко-русский математический словарь. 2013.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "diskrete Punktmenge" в других словарях:

  • Blockplan — Ein Blockplan (auch Block Design oder kombinatorisches Design) ist eine Inzidenzstruktur, die insbesondere in der endlichen Geometrie, der Kombinatorik, sowie der statistischen Versuchsplanung von Bedeutung ist. Inhaltsverzeichnis 1 Definition 2… …   Deutsch Wikipedia

  • Steiner-Tripel-System — Ein Blockplan ist eine Inzidenzstruktur, die insbesondere in der endlichen Geometrie, der Kombinatorik, sowie der statistischen Versuchsplanung von Bedeutung ist. Inhaltsverzeichnis 1 Definition 2 Beispiele und Eigenschaften 2.1 Parallelismen und …   Deutsch Wikipedia

  • Steinersches Tripel-System — Ein Blockplan ist eine Inzidenzstruktur, die insbesondere in der endlichen Geometrie, der Kombinatorik, sowie der statistischen Versuchsplanung von Bedeutung ist. Inhaltsverzeichnis 1 Definition 2 Beispiele und Eigenschaften 2.1 Parallelismen und …   Deutsch Wikipedia

  • Liste von Transformationen in der Mathematik — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik zur Löschung vorgeschlagen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel… …   Deutsch Wikipedia

  • Algebraische Vielfachheit — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenfunktion — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenfunktionen — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenvektor — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenvektoren — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenwert — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenwerte — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»